Double Seams & Critical Performance Parameters

Metal Packaging Solutions

Introduction

This double seam reference chart is intended for use by personnel responsible for setting and checking double seams. In addition, the chart will provide a useful guide to good double seaming practice, for engineers, production operators and quality assurance personnel.

Its prime objective is to assist personnel whose decisions determine the quality of double seams.

Can Terminology Flange width Flange thickness Freeboard Flange radius Outside can Empty can height

End Terminology

Double Seam Evaluation

- Visual external examination - External measurements - Seam sections

Evaluation Frequency

- A visual check should be carried out every hour A full 1st operation seam evaluation should be carried out once a week
- A full 2nd operation seam evaluation should be carried out during every shift

Seam Evaluation

Typical Double Seam

External **Seam Components**

Internal **Seam Components**

1st Operation **Seam Evaluation**

2nd Operation **Seam Evaluation**

Body Hook Butting (BHB)

Seaming Process

Seam Formation

Seaming Process - Pin gauge height - Distance between base-plate and chuck lip at the peak of 1st operation cam - Needs to be adjusted after can height change Chuck height - Calculation: Finished can height - (chuck lip height + lifter deflection)

Double Seam Faults Analysis

Sharp Seam/ **Fractured Seam**

on the inner seam radius. Possible causes: - 2nd operation too tight

Resulting in: In extreme cases this may cause the seams to split or slivers to occur

- Worn seaming chuck

- Incorrect seaming roll

Incorrect roll to

chuck setting

profile

Skidder

ceases to rotate during the seaming process. Possible causes: - Incorrect seaming chuck - Lifter (spring) pressure set too low - Incorrect pin gauge height setting - Worn seamer tooling and equipment Incorrect chuck

An incomplete 2nd operation seam occurs when the can

surface finish Resulting in: - Product and gas leakage

False Seam

Defect where a portion of the end and body hook are not Possible causes: - Damaged can flange - Damaged or deformed Incorrect filler/ seamer setting Resulting in:

- Clam shell (seam - Product and gas

1st Operation too Loose

Possible causes: - 1st operation roll set too loose

- Worn 1st operation roll - Incorrect 1st operation roll profile Resulting in: - End hook too short

- Large "finished" seam

- Reduced actual overlap

1st Operation too Tight

Possible causes: - Incorrect 1st operation roll set to tight profile Resulting in:

- Wrinkles or veeing

- Body hook too short

- Fractured can wall

Excessive Seam Gap

Possible causes: - Loose 2nd operation roll - Incorrect seaming

chuck to roll clearance - Incorrect seaming chuck

- Incorrect pin gauge height - Lifter (spring) pressures set too low Resulting in:

- Possible metal pick-up

- Product and gas leakage

Body Hook too Long

Possible causes: Pin gauge height set

- Lifter (spring) pressure set too high Resulting in: - Excessive BHB - Fractured seam

- Compound squeeze

Body Hook too Short

opening)

leakage

Possible causes: - Pin gauge height set

- Lifter (spring) pressure set too low - 1st operation roll set too tight

End Hook too Long

Possible causes: - 1st operation roll set - Incorrect 1st operation roll profile

Resulting in: - Short BHB - Longer actual overlap

End Hook too Short

Possible causes: - 1st operation roll set too loose - 2nd operation roll set too tight - Incorrect 1st operation roll profile

Excessive Seam Length

Possible causes: - 1st operation roll set too loose - 2nd operation roll set too tight - Worn 1st and/or 2nd

- Product and gas

leakage

operation roll Resulting in: - Overtight seam - Actual overlap too short Possible metal pick-up

Tightness Rating (Wrinkle Assessment)

Wrinkles on the inside Face of the **End Hook**

Resulting in: Possible causes: - Incorrect (loose) 2nd - Product and gas operation roll setting - Worn or damaged tooling

Body Wall Fracture

Possible causes: roll setting - Worn 1st operation roll profile Resulting in:

- Product and gas

leakage

For any additional information please contact your local Ardagh Group CTS department or CTSbeverage.cans@ardaghgroup.com